
Multiple-scattering effects for the propagation of light in 3D slabs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 7653

(http://iopscience.iop.org/0953-8984/2/37/010)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 11/05/2010 at 06:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 7653-7677. Printed in the UK 
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Abstract. A consistent theory for coherent multiple isotropic scalar and Rayleigh 
vector scattering is presented using a point interaction model for the scatterers. A di- 
agrammatic expansion is employed and new interesting coherent effects are discussed. 
Dependent-scattering corrections are calculated for the dielectric constant and the 
scattering mean free path. Intensity diagrams are considered and, in particular, the 
contribution of closed light paths (loops) is investigated. A new coherent feature is 
identified a forward cone but, because of its density dependence, it will be difficult 
to detect this cone experimentally. 

1. Introduction 

Interference phenomena in light propagation have been given much attention lately. 
It has been realised that light paths that are time-reversed with respect to the usual 
incoherent contribution [ 11 give rise to enhanced backscattering. As every incoherent 
scattering event, except for the single-scattering contribution, has a time-reversed 
variant, an enhancement factor slightly less than two is expected. This has been 
verified experimentally, although there were indications that this factor is less than 
expected on the basis of single-scattering events alone [2] . Diagrammatic theories for 
both isotropic scalar [a, 31 and Rayleigh vector scatterers [4,5] were set up and were 
found to  agree quite well with experiments. Recently three new polarisation effects in 
coherent backscattering were reported [6 ,7]  and explained on the basis of low-order 
scattering events for which polarisation effects are not averaged out. 

In diagrammatic theory, the enhanced backscattering, also known as weak localisa- 
tion, is described by the ‘most-crossed’ diagrams which predict a cone in the backscat- 
tered light with typical angular width A0 w where itr is the transport mean 
free path and k is the wavenumber in the medium. The vanishing of diffusion, known 
as strong localisation, is associated with these diagrams as well. This idea has been 
worked out analytically for electron waves [8] and, later, also for acoustic waves [9] 
on the basis of perturbation theory. This theory is expected to apply when the scat- 
tering mean free path 7 is much larger than the wavelength in the medium: k i  >> 1. 
The onset of strong localisation in three dimensions is often assumed to be satisfied 
simultaneously with the Ioffe-Regel criten’on 

kitr = 1. 
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It should be emphasised that Itr is a fundamental transport property, directly related 
to diffusion, whereas the scattering mean free path 7 is a length scale of the amplitude 
Green function. Therefore, a study of the scattering mean free path cannot give infor- 
mation about the location of the mobility edge, although equation (1.1) is sometimes 
replaced by the condition ki = 1 simply because the quantity ki is much easier to 
calculate. The major problem with this condition [lo] is that it seems to predict a 
mobility edge independent of the dimensionality of the system, which is in contradic- 
tion to  scaling theories. In principle, both 7 and It, are accessible via transmission 
experiments. In the lowest order of the density, perturbation theory predicts them to 
be related according to the Boltzmann formula 

B A van Tiggelen et a1 

where (cos 0 )  is the average cosine of the scattering angle. For an isotropic or Rayleigh 
phase function this quantity is equal to zero. 

The article is organised as follows: in section 2 we will give a definition of our 
point interactions, without going into much detail. In section 3 the averaged ampli- 
tude Green function is evaluated both for scalar isotropic and Rayleigh vector point 
scatterers. It is then possible to give the effective dielectric constant and the scat- 
tering mean free path as functions of the density of the scattering particles. Section 
4 deals with contributions to the scattered intensity coming from diagrams involving 
two Rayleigh vector scatterers. In section 5 recurrent light paths (loops) with more 
scatterers are discussed. Because of their complex nature, we restricted ourselves to a 
scalar approach. Loops are important for two reasons. Firstly they are equal to their 
time-reversed variant and, thus, present a special case among the subset of diagrams 
that do have a time-reversed equivalent. They give a positive angle-independent con- 
tribution to  the scattered intensity and will therefore reduce, in principle, the enhanced 
backscattering factor below two. Secondly, the loops turn out to have a coherent equiv- 
alent as well, though not at  backscattering: their coherent variants, to  which we shall 
refer as forwad-crossed, give constructive interference behind the slab. The angular 
dependence and their density dependence will be discussed. 

2. Point scatterers 

Generally speaking scattering calculations are greatly simplified if the interaction caus- 
ing the scattering phenomenon is separable. On the other hand, physical potentials 
are local, i.e. functions of position only. If one insists on having both features simul- 
taneously one is led to point interactions such as the &potential in one, and the Fermi 
potential in three dimensions (for a thorough study of such point interactions see [ll]). 
A point interaction can also be interpreted as a boundary condition imposed on the 
domain of the non-perturbed generator of the time evolution (the Hamiltonian-A in 
the Schrodinger situation ). In the Schrodinger case in more than three dimensions, 
as well as in the Maxwell case, this strategy breaks down: it is impossible to obtain 
a self-adjoint time evolution generator, which is different from the non-perturbed one 
in this way (in mathematical terms: we encounter a case of essential self-adjointness). 
Nevertheless, Grossmann and Wu [12] and Wu [13] found objects which have many 
properties of the resolvent (Green function) for the Schrodinger case in five dimen- 
sions and the Maxwell case, respectively. In fact both cases turned out to be quite 



Multiple-scattering effects for t he  propagation of light 7655 

analogous mathematically. In particular, scattering quantities could be calculated. A 
property that was lacking was a square integrability property, so that Hilbert space 
vectors were mapped out of the space. 

It was suggested by these authors that the problem could be given a rigorous basis 
using a Pontrjagin space formalism. This was taken up by van Diejen and Tip [14] 
who found that such an approach indeed works and that scattering quantities can be 
rigorously defined as objects in the original Hilbert space using a 'two Hilbert space' 
set-up. The resulting scattering operator is unitary and the optical theorem holds. 
There is also a canonical way to obtain the relevant point interaction. In the case 
of electromagnetic scattering from a dielectric sphere (Mie scattering), one obtains a 
corresponding unique point-interaction model having the same asymptotical behaviour 
at low energies. An arbitrary number N of point scatterers can be accommodated in 
this way while retaining the important property valid for N separable interactions 
in the conventional situation: the calculation of the N-scatterer T-matrix merely 
requires the handling of a complex N x N matrix. For scalar scattering the situation 
is similar. In that case the vector wave equation is replaced by a scalar wave equation 
and polarisation effects are absent. 

Using the above techniques we obtain, for N isotropic scalar point scatterers in 
vacuum positioned at  {z ,~} ,  for the total T-matrix 

Here z is the complex energy, IO)t(r)(Ol is the one-scatterer T-matrix. If for conve- 
nience we define s f z sign(1m z ) ,  it follows that s2 = z 2 ,  Im s > 0 and 

-4as2 
1 / a  - is3 

t ( 2 )  = 

and D(z) E CNiN 

( 2 . l a )  

( 2 . l b )  

The constant CY is a free parameter to be specified later. The empty-space Green 
function is 

exp( isx) 
4ax 

g(2,x) = --. ( 2 . l c )  

The scattering amplitude is 

where lkl = Ik'l E ko ,  which nieans that the total 2"-matrix is to  be taken on the shell. 
For the Rayleigh point scatterers equation ( 2 . 1 )  also applies, but now 

-4as2 
1 / a  - $is3 

t ( 2 )  = ( 2 . 2 a )  
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and D(z) E CNiN 8 C313 

The empty-space Green function for the vector case is 

g ( z l  z) = P(sx)A, + Q(sz) 99 

( 2 . 2 b )  

( 2 . 2 c )  

where the transverse part P and the longitudinal part Q are given by 

The matrices A, and 99 are projections perpendicular to  and along the direction 
of z, respectively. I is the 3 x 3 unit matrix. We infer that  the T-matrix depends 
on the complex energy via zsign(1mz). In sharp contrast with Schrodinger, we can 
identify two ‘physical sheets’, that  cannot be connected by analytical continuation, 
because there is a continuous spectrum along both the positive and the negative 
real axis. The Green funcQion in equation ( 2 . 2 ~ )  lacks, as mentioned earlier, square 
integrability. Note that the integral of the Green function itself does exist, provided 
we first integrate over angles. In fact, averaging over angles brings us back to  the 
scalar Green function in equation ( 2 . 1 ~ )  

The scattering amplitude is 

The (normalised) polarisation vectors are denoted by e ,  and and again llcl = 
Ik’l E k o .  The T-matrix equation ( 2 . 2 )  is a tremendous simplification of the rigorous 
T-matrix in [15]. The one-scatterer albedo is defined as the ratio of the total scattering 
cross section and the imaginary part of the forward amplitude [16]. For our models 

( 2 . 3 a )  

( 2 . 3 b )  

If the coupling parameter a is real, it follows from equations ( 2 . 1 ~ )  and ( 2 . 2 a )  that  
the albedo is unity. This is the optical theorem [17]. From now on we shall adopt 
conservative scattering a.nd equation ( 2 . 3 )  applies. Most effective scattering occurs a t  
resonance where Q -+ CO. Then the total cross section is proportional to X2/7 r ,  with 
X the wavelength. Scatterers with optical volumes larger then their physical volumes 
are expected to  be well approximated by point interaction models. 
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3. Renormalisation of the amplitude Green function 

In this section we deal with dependent-scattering effects in the amplitude Green func- 
tion, and show that the use of point scatterers allows a rigorous solution. Density 
corrections to  the scattering mean free path were discussed by Bringi e2 a1 [18], who 
applied the rigorous Waterman formalism [17] and included a physical exclusion prin- 
ciple. For the actual calculation they had to rely on a ‘quasi-crystalline approximation’ 
which, in fact, neglects repeated scattering between scatterers. This is justified if the 
particles scatter predomimantly in the forward direction, as is the case for Mie spheres 
large compared to the wavelength, but not if the phase function is essentially isotropic. 
This is true for our point interaction models. 

For the description of random media we are interested in an ensemble average 
of scattering quantities in a thermodynamic limit N -+ 00,v + 00 and N / V  --.$ n.  
We will not deal with the important question whether or not this limit exists math- 
ematically. Furthermore, no correlation effects are assumed and every configuration 
of the N scatterers is equally probable. This is clearly an oversimplification for large 
packing fractions, but we emphasise that physical exclusion can be neglected if the 
optical volume of the scatterer is larger than its ‘hard-sphere radius’. Equation (2 .1)  
gives rise [19] to the definition of a renormalised Green function G and a self-energy 
operator C that relates the latter to the empty-space Green function g. In operator 
notation 

with an analogous equation for the vect>or case. If we assume space to be translationally 
symmetric, equation (3.1) has a simple solution as, in reciprocal space, every operator 
is diagonal: (plMlp’) = M ( p ) b ( p  - p ’ ) .  For the scalar case it follows that 

G ( z , p )  = [ z 2  - p z  - C ( z , p ) ] - ’  

and for vector scattering that 

(3 .2a)  

(3.2b) 

where A p  E I-$$ is the transverse projection matrix. The self-energy 2(z lp)  is now 
a 3 x 3 complex matrix. The usual independent-scattering approximation consists of 
taking the lowest order in density in the self-energy 

The ensemble-averaging is denoted by the brackets. For the vector case an extra iden- 
tity I E C313 comes in. We take z G IC, + i f ,  as in section 2. This choice makes equation 
(3.2) the definition of the retarded Green functions. From now on we shall omit the 
explicit %-dependence. Equation (3 .3)  gives rise to a new complex wavenumber 
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In the low-density limit, the imaginary part directly relates to the scattering mean 
free path 

-- 1 Imt  nltI2/4n (scalar) { nltI2/6n (vector) 
1 =-n-= z na,(k,) .  

k0 
0 (3 .4)  

The second equality applies for conservative scatterers and follows from (2 .3) .  We 
define the disorder parameter 

q = 4xn/kg .  (3.5) 

Dependent-scattering corrections in the self-energy are shown in figure 1. For the 
scalar point interaction they sum [20] up to  

The first term represents the set of proper diagrams with the same scatterer at both 
sides (loops) and gives a dependent-scattering correction to the one-scatterer T-matrix, 
the second term the set with different scatterers at both sides and is, for point scat- 
terers, the first pdependent contribution. Its first order is subject to  an ultraviolet 
(uv) singularity that is renormalised by adding the total geometric series. This con- 
tribution has an oscillatory behaviour near p = 3k,, which is damped if the free-space 
Green functions in equation (3.6) are replaced by their averaged equivalent given in 
equation (3 .2) .  Because of equation (3 .2a) ,  large values for p / k ,  are not important 
as long as C ( p )  remains finite. Therefore we shall evaluate this contribution on the 
shell: p = k,. This clears the way for solving the renormalisation issue. We propose 
the following (self-consistent) calculation scheme: first we replace every T-matrix by 
its loop-corrected value, and second we replace every Green function by its averaged 
equivalent according to equation (3.1). Of course we must be careful not to double 
count certain diagrams. This yields the following set of coupled equations 

(3.7) 

and was solved for various disorders using a Newton-Raphson method. In equa- 
tion (3 .7) ,  the conventions are as in figure l. A cross within a circle denotes the 
loop-corrected one-scatterer T-matrix; a bold line represents the renormalised Green 
function. The full circle is the self-energy operator. The third equation is Dyson’s 
equation relating the renormalised Green function to the empty-space Green function. 
The scattering quantities of interest follow from the relation 
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The result for the scalar point scatterers is shown in figure 2 ( a ) .  We have set the 
scatterers t o  resonance. For less effective scatterers, dependent-scattering corrections 
are strongly suppressed and we expect the independent-scattering approximation to  
become better. Near 7) = 1 the scattering mean free path becomes an increasing 
function of density. We infer that  ki > 1 for all disorders. For q > 1.36 the iteration 
procedure no longer converged in less than ten iterations. 

. - - -,; - - - . 
I*  ', '\, 

-4- i u x  + .. 
Figure 1. Dependent-scattering corrections to the self-energy. A straight line repre- 
sents the empty-space Green function; broken lines are connections between identical 
scatterers. A cross denotes the one-scatterer T-matrix. 

0.5 1 1.5 2 

Figure 2. Various scattering quantities following from the solution of the self- 
consistent equation (3.7): ko is the empty-space wavenumber, k is the renormalised 
wavenumber and L k 2 / k i  is the dielectric constant, 50 is the independent-scattering 
result for the scattering mean free path; 5 is the scattering mean free path including 
dependent-scattering corrections. ( a )  Scalar isotropic point scatterers a t  resonance; 
( 6 )  vector Rayleigh point scattemrs at resonance. 

For the Rayleigh point scatterer the calculation is essentially the same. Using 
equation ( 2 . 2 ~ )  the two-scatterer correction to  the self-energy is 
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The Green function in reciprocal space becomes, according to  equation (3.2b) 

where C , ( p )  z nt(IC,) + C,!”(p).  The pdependent contribution Cb2)(p) turns out to  
be rather weakly dependent on p ,  being finite for both small and large values of p .  I t  
will therefore be evaluated on-shell: p = IC,. For E,(p) things are different as i t  finds 
itself in the nominator of equation (3.10). 

Transforming t o  real space yields the following averaged Green function 

We have defined z 2  E ki - Ci(ICo). Two comments are in order here. Firstly, the zw3 
singularity of the vector Green function does not give uv problems in the self-energy 
because the full series is summed. In fact the problems occur when t ---$ 0. In that 
case the integrands of equation (3.9) have a pole a t  ICx, M (ICt/47~)’/~ approaching the 
real axis. Physically this pole reflects a standing wave between two scatterers. If we 
fit the T-matrix to  a small Mie sphere with radius a and dielectric constant E > 1 then 
t M ( 4 7 ~ / k ) ( I C a ) ~  ( E  - 1 ) / ( ~  + 2) and hence x, < a. Thus, this resonance is not present 
in a scattering event involving two identical small Mie spheres. 

Secondly, the two-scatterer renormalisation not only gives a damped wave vector, 
but also adds an extra term to the averaged Green function. Appendix C shows that  
- this term is in fact an exponentially damped longitudinal mode with decay length 
1/3. I t  is dropped in the numerical calculations, although it may contribute for large 
disorders. The results for the scattering mean free path and the dielectric constant are 
shown in figure 2( b ) .  The mean free path is now found to decay with density, but we 
see that  the condition k7 < 1 is never reached. Obviously, dependent-scattering effects 
increase the scattering mean free path; this conclusion remains true if the scatterers 
aie set off resonance. The saturation for large disorders is due to  the very singular 
Green function as the argument x becomes much smaller than the wavelength: 

I - 3 2 2  
G(z)  ---* - 

4nr2x3 * 
(3.12) 

Using the solution of the self-consistent equation (3.7) it is possible to  compute the 
self-energies in equation (3.9) for any momentum p .  This allows a check on the on-shell 
approximation. The self-energies are plotted in figure 3, for various disorders. We can 
infer that  setting C , ( p )  on the shell is rather accurate. The self-energy appearing in the 
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N 

9 
c 
h 

7 )  = 0.50 7 )  = 1 0 0  

d 

b 
........................................... 

- 7  -, 0 2 4 6 

momentum p [k,] 

t 
......... ......... .___.  -..-- 

- 1  

t 
-2 ,,, 

0 2 4 6 
momentum p [k,] 

Figure 3. The self-energy for the Rayleigh point scatterers as a function of momen- 
tum, for various disorders, using the solution of the self-consistent equation (3.7). 
This equation was solved by setting the self-energy C, on the shell: p = ko and 
the one-scatterer T-matrix to resonance. The bold lines denote C , ( p ) ;  the broken 
lines C , ( p )  + C , ( p ) .  a, Re[C, + E,]; b, Im[C, + E,]; c,  Rex ,  and d, ImC,. The 
independent-scattering result is: C , / q  ki = -1.52. 

denominator of the integrand in equation (3.10) is more dependent on the momentum 
because C , ( p )  - p 2  as p --i 0. 

The  change in the scattering mean free path in lowest order of the density is found 
from equation (3.8) 

(3.13) 

The correction is still a function of the one-scatterer T-matrix, and can be calculated 
easily from equation (3 .6)  for scalar point scatterers, and from (3.9) for Rayleigh point 
scatterers. For the special case where the scatterers are a t  resonance, we find for the 
scalar point scatterers that  

illo = 1 - 0 . 3 7 5 ~  ( 3 . 1 4 ~ )  

and for the Rayleigh point scatterers that  

i/io = 1 + 0 . 4 2 7 ~ .  (3.14b) 

Clearly, in lowest order of the density, and at  resonance, dependent-scattering cor- 
rections increase extinction for scalar scatterers, and decrease extinction for Rayleigh 
scatterers. This involves a redistribut,ion of energy. We will not deal with the energy 
balance in case dependent-scattering effects are incorporated. 

4. New coherent effects in the scattered intensity 

The usual approach to  calculate the scattered intensity from a slab containing ran- 
domly distributed isotropic point scatterers [ I ,  211 is to  solve the Milne equation. This 
equation follows from perturbation theory if the independent-scattering approxima- 
tion is used for the scattering mean free path and under the assumption that the 
multiple scattered light is given by the ladder diagrams only. This simplification is 
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usually referred to  as the first-order smoothing method [19] and involves neglect of all 
high orders in density. After first-order smoothing, the Ward identity [8,22], which is 
a rigorous identity relating self-energy and irreducible vertex by energy- (or particle-) 
conservation, is still satisfied and reduces to  equation (3.4). The Milne equation 
conserves, therefore, energy. The most important coherent effect is described by the 
time-reversed variants of the ladder sum. They account for a narrow cone a t  backscat- 
tering with angular width A0 FZ l / k T .  Its exact angular dependence is well understood 
on the basis of a generalised Milne equation [2], although a diffusion approximation 
usually suffices. 

A rigorous multiple-scattering theory for Rayleigh vector point scatterers has not 
yet been developed, and one must rely on a diffusion approximation [4,5]. There is 
one important reason why the diffusion approximation is not satisfactory. Because it 
is essentially a long light path limit, short light paths are strongly underestimated. 
Consequently, the diffusion approximation predicts the wrong angular dependence 
in the wings of the enhanced backscattering cone (0 > l / k j )  where low orders of 
scattering dominate. Moreover, it is known that low orders have a strong tendency 
to  preserve polarisation [6] and thus we cannot expect the diffusion approximation to  
account for observed polarisation effects in the backscattering of vector waves. 

Figure 4. ( a )  Intensity loop diagrams involving two scatterers. A bold line corm 
sponds to the renormalised Green function. ( b )  Forward-crossed diagrams involving 
two scatterers. They give constructive interference at forward scattering and are in 
that case equal to the loop background. 

This section deals with the calculation of low-order scattering events which can, 
using the point scattering models, be calculated analytically. We will discuss the 
two-scatterer ladder and the two-scatterer most-crossed diagram, and, in addition, 
more complicated two-scatterer events such as loops. The scattered intensity will be 
expressed by means of the bistatic coefficient [21]. This is a dimensionless quantity 
that  is easily accessible to  experiments. For the Rayleigh point scatterer the two- 
scatterer intensity loops, shown dia,grammatically in figure 4( a ) ,  contribute to the 
bistatic coefficient a t  exactly backscattering 
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where the loop kernel is 

L(z)  = ek.G2(z)-  [ 1 - t 2 G Z ( z ) ] - l  .ea, 

A is the illuminated surface of the slab, and t given by equation ( 2 . 2 ~ ) .  We have chosen 
the t axis perpendicular to  the slab along the direction of the incoming wave; G(z) 
is the averaged Green function defined in equation (3.11). The bistatic coefficient 
is still a function of the slab thickness, the density of the scatterers, and their T- 
matrix t .  To get some physical insight, let us assume k i  >> 1.  As the kernel falls 
off rapidly with distance ( [LIZ - exp(-2z1,/~)/z~,) ,  we shall rely on the 'infinite 
space approximation' and integrate the position of the second scatterer over all of 
space. After some algebra we find, using equation (3.4) and the disorder parameter 
in equation (3 .5) ,  that  

= i 7 @ 1 4  [I - exp(-2r)] G(f, el, ea/) (4.2) 

where 

1 + 2w2 IR - TI2 + -w2Re(T 2 - 1)(R - T)' 
3 G(f ,  w )  = lm dy y2 (IT - 1I2p2 + 7 

In this equation we have introduced the dimensionless quantities t" E ( 4 7 r / l ~ ~ ) - ~ t ,  the 
optical depth of the slab T and 

1 
1 - t2Q2 R =  

1 
1 - t2P2 

T =  

It can be solved numerically for any allowed value of the one-scatterer T-matrix t .  At 
resonance this yields 

Y,-(~) = q[1.41 + 6.52(ek *e61)2][1 - exp(-2r)] (4.2a) 

This is to  be taken as an upper limit for the contribution of these loops at  backscat- 
tering, and can be compared to the single-scattering bistatic coefficient 

yS = :(ek * e8,)'[1 - exp(-2r)]. (4.3) 

For 9 M 0.1, the contribution of these loops is thus comparable to  single scattering, 
and has, in addition, a cross-polarised component. It is seen that they scale with 
a first power of the density. As we will see in section 5,  this is not true for loops 
involving more than two scatterers. The bistatic coefficient has, judging from its 
optical depth dependence, a penetration depth 7 like the one for single-scattering. 
Therefore, the two-scatterer loops cannot be responsible for a change in the enhanced 
backscattering factor in weak localisation experiments on diflerence slabs (e.g. slabs 
for which the contribution of the first few mean free paths has been subtracted): it 
gives renormalised single scattering and a slight change in its degree of polarisation. 

The total two-scatterer ladder sum is illustrated in figure 5(a).  They contribute 
in the backward direction 
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+ . . .  

Figure 5.  ( U )  The two-scat,terer ladders including dependent-scattering corrections. 
( b )  The two-scatterer backward crossed diagrams. They are the time-reversal vari- 
ants of the t,wo-scatterer laddels and give constructive interference in the backward 
direction. 

where the ladder kernel is 

L ( z )  = ek * G(z) * [ 1 - t2G(z)’] e;, . 

It is important to note that ,  because of the singular nature of the vector Green func- 
tion, the incoherent ladder (first diagram of figure 5( a ) )  suffers from an uv singularity. 
Only in the limit ki -+ CO do the singular terms disappear. Scaling with ki gives in 
that case the ladder kernel in the far-field approximation 

(4.5) lL,(z)I2 = ,,exp(-z/T)(ek.A,.e;,) 1 2 . 

The bistatic coefficient becomes, in the co-polarised (ek 1 1  ea,) and cross-polarised 
(ek I e;,) channel 

1 x - [I - exp(-(1 + c ) ~ ) ]  
1 S C  

0.3930 
= (0.0586) 

The co-polarised value compares well to the scalar two-scatterer ladder $ log 2 = 
0.3466. Whereas single-scattering equation (4.3) is 100% polarised, the two-scatterer 
contribution has a degree of polarisation 

y(co-pol) - y(cross) 
y(co-pol) + y(cross) = 74%. 

Assuming that the two-scatterer ladder, summed for both channels, amounts to  about 
8% of the total incoherent background a t  backscattering, which is true for scalar 
isotropic scattering [a], we can deduce that single and double scattering events are 
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responsible for a polarisa,tion degree roughly equal to 18% of the backscattered signal. 
This is not far different from the value 24% found in [7] by numerical simulation, 
confirming that the partial polarisation of the backscattered signal is due to the very 
low orders of scattering. 

Near-field corrections to the two-scatterer ladder diagram can be found, for any 
disorder, by subtracting equation (4.6) from equation (4.4). In the limit of weak 
disorder IC7 >> 1 we find that 

AyL(2) = Ay(trans.) + Ay(1ong.) + A y ( t r a n s . / h g . )  (4.7a) 

where 

Ay(trans./long.) = -q1t"I2 ( -1/15 2/15 ) l m d y y 2 2 R e  [aR(I'T)*] . 
4 

We have defined p, Q 3 (4x/b,)P(y),  Q(y).  Again, the upper number of the column 
vector applies in the co-polarised channel , and the lower number in the cross-polarised 
channel. The integrals can be evaluted numerically for any one-scatterer 7'-matrix. 
Setting this 3"-matrix to resonance we find that 

(4.7b) 

Note that we deal here with a positive correction to the enhanced backscattering factor 
in the co-polarised channel, because the background is decreased. 

The time-reversed variants of the two-scatterer ladders (figure 5( b ) )  give the lowest 
order contribution to the backward cone. Assuming again ki + m, we deduce, as a 
function of the backscattering angle 0 

with b E IC + IC' and s(0) E (1 + 1/ cos 8). In appendix A this equation is further 
analysed in the regime where it is of experimental importance, namely in the wings: 
0 > ( k o ~ o ) - l  . It  will be shown that equation (4.8) accounts for a 0-' fall-off in 
the co-polarised channel of the cone, and a 0-2 fall-off in the cross-polarised channel. 
In addition, polarisation effects in the co-polarised channel can be understood quan- 
titatively, and confirm the qualitative analysis in [6 ] .  As a corollary we calculated 
the wings for circularly polarised light in both helicity channels. We find that both 
channels exhibit 0- l  behaviour, and are isotropic, like the wings for scalar waves. 
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Near-field corrections to  the two-scatterer cone can be found as follows: 

We have neglected some extinction factors, because the integral exists without them. 
Physically this means that the angular width of this correction is by no means equal 
to  the typical (kT)- l  predicted by the most-crossed diagrams in the far-field approxi- 
mation. Whereas the latter account for a large narrow cone the diagrams in equation 
(4.9) yield a small broad cone, and can better be classified as a density correction 
to  the background. One should therefore be very careful with the statement that  the 
enhanced backscattering factor is only influenced by angle-independent diagrams that 
are equal to  their time-reversed equivalent or do not have a time-reversed equivalent 
a t  all. 

The last two-scatterer intensity diagrams we will discuss are shown in figure 4( b ) .  
It is easy t o  see that these diagrams give constructive interference in the forward 
direction. Moreover, their value at  exactly forward scattering is equal to  the loop 
background. In fact, any forward-crossed diagram has a loop equivalent which is 
angle independent. The reverse statement is not true. The bistatic coefficient behind 
the slab is, in the infinite space approximation, as a function of the forward scattering 
angle 0 

with 

and f = h - 12'. Because the int,egral esists for any 0 without damping of the Green 
function, the angular width of this forward cone is not (kT ) - ' ,  but much wider and is 
mainly determined by the r-dependent prefactor. This will complicate its verification 
in transmission experiments. 

5 .  High-order loops and forward-crossed diagrams 

We have seen that the loops involving two scatterers suffer from an uv singularity, scale 
with afirst power in density, and have a coherent analogue in the forward direction. We 
will now study the loops and forward-crossed diagrams with more than two scatterers. 
Because of the complexity of these diagrams we will restrict our discussion to  scalar 
isotropic point scatterers. I t  is shown in appendix B that the scalar loops involving 
three scatterers (figure 6 ( a ) )  are subject to  a logarithmic singularity and must be 
renormalised. Physically this means that loops shorter than X are excluded because 
the optical volumes of the scatterers start  to  overlap. Consequently, their contribution 
to  the bistatic coefficient a t  backscattering has a logarithmic density dependence. 
A numerical evaluation of equations ( B . l l )  and (B.12) in appendix B resulted in the 
approximate expression, for scatterers a t  resonance in a semi-infinite slab, valid in the 
limit of small disorder 7 + 0 

y13(3) x -1.9511~ log (15.177). 
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The loops involving four scatterers and more, ‘diffusive loops’, are shown in figure 6( b ) ,  
and do no longer suffer from this uv singularity. Using the method of images [2,5], 
they can be calculated rigorously for any optical depth (appendix B). They are well 
approximated by the expressions 

Y,-(,.,~~) m 2.6Oq21il6 [l - exp(-1.25r)] ( 5 . 2 ~ )  

at  backward scattering, and 

Y,-( , . ,~~)  m 3.79q21fI6r exp(-0.85r). ( 5 . 2 b )  

a t  forward scattering. 

rFTT 
, 1 1 1  
I I I I  
I I I I  
, I l l  - + 

Figure 6 .  ( a )  Intensity loops involving three scatterers. Both diagrams give an 
equal angle-independent contribution. They are subject to a logarithmic singularity. 
(6) Diffusive loops, involving four or more scatterers. Again bot,h diagrams give an 
equal angle-independent contribution, but do not suffer from an uv Singularity. 

Judging from equation ( 5 . 2 ) ,  these loops have a penetration depth that is larger 
than and as a result do not give renormalised single-scattering like the two-scatterer 
loops. The loops involving three or more scatterers have a coherent equivalent as well, 
but because of the complex irreducible nature of these high-order forward-crossed 
diagrams it is not straightforward to get an expression for them using the method of 
images. In order to find out whether or not these diagrams are responsible for a narrow 
forward cone, we will again rely on the ‘infinite space approximation’. Appendix B 
shows that the angular dependence of the forward cone resulting from three scatterers 
has a logarithmic angle dependence and is therefore not narrow. For the coherent 
equivalents of the loops involving four or more scatterers it is found that 

with 
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Figure 7 .  The function C(f) given in equation (5.3). It gives the form of the 
forward cone resulting from scattering from four scattemrs and more on the basis of 
the infinite space approximation and in the limit of weak scattering: k i  > 1. It is? 
rather smooth function of the forwadscattering angle B and has angular width 3 / k l .  

We have defined A(p) = t an- 'p /p  and f = 7, ( I C  - k'). Equation (5 .3)  is a very 
rough estimate because small q (long loops) suffer severely from the finiteness of the 
slab, bu t  for f = 0, the exact numerical value is given by equation ( 5 . 2 b ) .  The  
function C(f) is plotted in figure 7. We infer a forward cone with angular width 
A0 x 3(k&)-'. A very important difference between this forward cone and the 
backward cone is illustrated in equation (5.3). Whereas the enhanced backscattering 
is essentially a diffusion process with long light paths involving N scattering events 
being responsible for a small backscattering angle, according to  A0 x ( k o T o ) - l / N ' / z ,  
the physical picture for enhanced forward scattering is a recurrent random walk. The  
endpoints of the t,wo interfering loops are roughly one steplength 5 apart ,  giving A0 x 
( I c T ) - ' ,  independent of the length of the loops. This fact makes the enhanced forward 
scattering less pronounced than  enhanced backscattering. Recurrent light paths are 
strongly suppressed if the scatterers scatter predominantly in the forward direction, 
such as Mie spheres tha t  are large compared to the wavelength. 

Because of the scaling with q 2 ,  and the exponential optical depth dependence of the 
bistatic coefficient, it  will be very difficult t o  detect this enhanced forward scattering. 
I t  may be argued tha t  this cone is also present in the cross-polarised channel for 
which detection is much easier. In this channel we expect no contribution from the 
attenuated incoming wave, nor from single scattering. Detection of this forward cone 
would be a unique direct verificat,ion of the very existence of recurrent light, paths. 

6. Concluding remarks and outlook 

We have shown tha t ,  for large disorders, dependent-scattering corrections increase 
the  scattering mean free path considerably. However, we have relied on an  on-shell 
approximation for the self-energy and ignored pair correlations. A more exact anal- 
ysis of the behaviour of the amplitude Green function for large disorders is clearly 
needed. We found tha t  after renormalisation of the amplitude vector Green function, 
an  extra longitudinal term arises which is of very short range. Although there are 
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experimental indications [2,18] that the scattering mean free path becomes larger, for 
large packing fractions, than the independent-scattering result, one should realise that 
pair-correlation effects might play an important role as well. 

I t  was found that  two-scatterer intensity loops scale with a first power of the density 
after renormalisation and give a contribution to  single-scattering. Therefore, they 
cannot be responsible for a change in the enhanced backscattering factor, especially 
not for difference slabs. Furthermore, we have indicated that longitudinal near-field 
terms cannot be neglected for large packing fractions. They were calculated for the 
two-scatterer ladder and most-crossed diagrams. It turned out that  the latter do not 
contribute to enhanced backscattering as their cones are so wide that they can better 
be classified as background. Loops involving more than three scatterers penetrate 
deeper than i into the slab, and, thus, do not give renormalised single-scattering. 
Because of their second-order density dependence, they cannot account for a decrease 
of the enhanced backscattering factor. 

It was shown that the loops have, just like the incoherent ladder diagrams, a co- 
herent equivalent: the forward-crossed diagrams. For our point scatterers the lowest 
orders in density of the forward-crossed diagrams yield a broad cone. Orders of scat- 
tering larger than three give a narrow cone, but are typically a factor k i  smaller. This 
makes the enhanced forward scattering very difficult to detect in weak localisation 
experiments. Experiments are going on a t  the University of Amsterdam to detect 
the forward cone in the cross-polarised channel, but have not yet verified its existence. 
Near the mobility edge we expect k i  x 1 and their positive contribution to  the diffusion 
coefficient may no longer be negligible. 

Finally, we have confirmed t.lie exist,ence of polarisation effects in the backscat- 
tered intensity of vector waves by an exact calculation of the contribution coming from 
the ladder and most-crossed diagram involving two Rayleigh vector point scatterers. 
These polarisation effects were already confirmed by experiments, and explained qual- 
itatively. We indicated a new feature: for such scatterers the co-polarised wings of the 
enhanced backscattering cone exhibit a e-' fall-off, whereas the cross-polarised wings 
turn out to  obey a e-' fall-off along the direction of one of the polarisation vectors. 
This is not predicted by the diffusion approximation. 
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Appendix A The wings of the two-scatterer cone 

In the case of scalar backscattering from a semi-infinite slab, the two-scatterer cone is 
given by the bistatic coefficient 

with b = kt1(k+ k') , 6 = 2sin8/2, and s ( Q )  = ( l / cosO+ 1)-l. This integral can 
be solved numerically for any disorder. To get some physical insight, let us assume 
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weak disorder: koj  = kojo >> 1. In the wings we have, by definition, b >> (kojo)- '  and 
the bistatic coefficient simplifies to  

B A van Tiggelen et a1 

Defining p E Okoio, and under the assumption that 0 << 1 ,  we find that 

YC(2) [e >> (koio)- ']  = : p - l  = o.7gp-1. 

YC(diff.) [e >> ( k O i O ) - l ]  Zp-" (A.2) 

(A.1) 

This can be compared to  the wings expected on the basis of the diffusion approximation 
P, 31 

This is already less than equation (A.1) for p 2 2. The p-' fall-off is a direct result 
of the adopted diffusion propagator. In the diffusion approximation, the rigorous 
(translationally symmetric) propagator for scalar isotropic point scatterers 

(A.3a) 

is approximated by its hydrodynamic limit 3/q2. Here q is the momentum transfer, 
scaled with the mean free path. We see that this approximation holds for large trans- 
fers, thus in the wings of the cone, as well, provided we 'drop' the first order, the 
two-scatterer contribution. Then 

(A.3b) 

In fact, this is the reason tha.t the diffusion approximation works so well for point 
scatterers. It explains the difference between equations (A.1) and (A.2) and, moreover, 
suggests that the diffusion approximation should improve considerably after a simple 
addition of the two-scatterer contribution. The e-' fall-off in the wings of the cone 
follows rigorously from this contribution. A 0-l behaviour was also found in [24], 
though under completely different assumptions. 

The wings of the two-scatterer vector cone can be estimated in the same way. 
Using equation (4.8) 

The angular integral is 
2 

(ek - e;))' jo(by)  + [ 1 + 2 (ek e;))'] + (ek 6) (e;, 6) j,(by) 
(by) 
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where j, is the spherical Bessel function of the first kind of order m, and 6 E b/b. 
Using the standard integral [23] 

the wings can be shown t o  be equal to  

where 

The complex nature of the funct,ion W clearly illustrates the anisotropy of the vector 
cone. The vector 6 is given by 6 = sin 46'2 + cos 46fi where i is perpendicular 
to  the slab, and R parallel. We set fi = cos42 + sin$$ and define the direction 
of the incoming polarisation ek = 6.  To calculate the anisotropy of the wings, we 
distinguish [7] two cases: case I has 4 = O,n, and case I1 has 4 = -7r/2,7/2. Let us 
assume 6 3 p / k o j o  << 1. Then 6= fi and it follows for the wings in the co-polarised 
channel (ek 1 1  eL1) that  

yc(2)(co-pol) = &n(3 + 5sin' 4 ) p - l  

yc(2)(co-pol, I) = 0 . 6 6 ~ - 1  

yc(2)(co-pol, 11) = 1 . 7 7 ~ - l .  

The co-polarised two-scatterer wing for case I compares well with the scalar result in 
equation (A.1). Both for the scalar case and the co-polarised Rayleigh case we find 
the p-' fall-off. For the cross-polarised channel (ek I e;,) we find that 

( A 4  yc(2)(cross) = E n  27 sin 2 24  ,U-'. 

We see tha t ,  for the cases I a.nd 11, equation (A.6) vanishes, and we need higher orders 
in ( k j ) - ' .  By expanding the extinction factors in the bistatic coefficient of the cone 
i t  follows, after some manipulations, that  

yc(2)(cross, I and 11) = g,u-2 = 0 . 3 3 , ~ ~ ~ .  (A.7) 

From equation (A.5) we infer that  the wings of case I1 in the co-polarised channel are, 
in case of point scatterers, more pronounced than for case I, in agreement with [7]. 
More precisely I : I1 = 3 : 8. The cross-polarised wings are the same for both case I 
and 11, and are narrower. For fixed 6 they reach a maximum a t  4 = n/4, - n / 4  , thus 
exactly in between the directions of both polarisation vectors. In that case 
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independent of 8. 
A p-' fall-off was also found by Stephen and Cwilich [4] on the basis of the diffusion 

approximation, though for both channels. As is demonstrated in equation (A.3a) for 
scalar waves, this is essentially due to neglect of the two-scatterer contribution. The 
exact wings in the cross-polarised channel are estimated by the sum of the diffusive 
part found by Stephen and Cwilich and the two-scatterer contribution equations (A.6) 
and (A.7).  

I t  was shown numerically by van Albada and Lagendijk [6] that  for long light paths, 
anisotropic effects can be completely neglected. Consequently, any theory incorporat- 
ing the diffusion approximation will not be able to  account for spatial anisotropy in 
the backscattered signal of vector waves. The wings of the cone are, by Fourier trans- 
formation, determined by short light paths. Therefore, the exact quantitative results 
equations (A.5)-(A.8) are subject to  direct experimental verification. 

Equation (A.4) is easily generalised for the case of circularly polarised light. Then 
the polarisation vectors become complex-valued. If the incoming and outgoing waves 
have the same helicities, we set, a t  backscattering where k' = - I C  

and for opposite helicitmy 

I t  follows that  

independent of 4. Using the complex equivalent of equation (A.4) we calculate for the 
wings in the opposite helicity channel 

yc(2)(opp.) = g 7 r p - l  = 1 . 0 5 ~ - '  (A.  10 a )  

and in the helicity-preserving channel 

(A. 10 b )  

Both helicity channels exhibit the 8-' fall-off, and are z n d e p e n d e n l  of 4.  The absence 
of anisotropic effects makes the wings very similar to  the scalar wings in equation 
(A.1).  The similarity in tthe enhanced backscattering of scalar waves and vector waves 
in the helicity-preserving channel was noticed by MacKintosh and John [5], on the 
basis of the diffusion approximation. 

We emphasise that  this analysis is valid for point scatterers with a Rayleigh phase 
function. For Mie scatterers with 'hard sphere radius' a ,  equations (A.5) ,  (A.6) and 
(A.lO) are expected to  apply in the regime 

( k y  < 8 < 1 < ( R a y  ( A . l l )  

provided it exists. A backscattering angle larger than l / k a  probes a light path shorter 
than the 'size' of the scatterers. This regime is expected to  be strongly influenced by 
pair correlation. The phase function of a Mie scatterer is in Rayleigh form if ka < 1. 
In that case the right hand side in equation ( A . l l )  is satisfied. 
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Appendix B High-order loops for scalar waves 

The total incoherent ladder sum for scalar isotropic point scatterers is characterised 
by a diffusion propagator F(zl , z2) that  satisfies the integral equation [2] 

In the backward direction, the contribution of the loops involving three scattering 
events or more (figure 6) t o  the bistat,ic coefficient is given by 

nit i 4  -1 

y = ($) 2- /. . . Jd3z,  d3z1 d3z2 d3z3 d3z4 G(zol)G*(zO2)F(z,, z3) 
(4.P 

An extra factor of two comes in because the loops with inner most-crossed diagrams 
equal the loops with inner ladders. Defining 

equation (B. l )  becomes, using the optical theorem equation ( 2 . 3 ~ )  

Various orders can be identified using 

and D(') = D. It follows, using equation (B.3),  that  

y = 2 7  '"' 1' dr, D ( 3 ) ( ~ 0 ,  7,) exp(-2ro). 
(ko'o) 

We have set t" = (47r /k ) - ' t ;  r is the optical depth of the slab. I t  is readily seen in 
reciprocal space, using the translationally invariant expression for D that  both D(2)(0)  
and D ( 3 ) ( 0 )  are infinite, that  is: low-order loops suffer from an uv singularity. In fact, 
the singularity of D ( 3 )  is logarit,hnic. For n 2 4 the loops sum to 

r ( n  2 4) = 2 7  dr, D ( 4 ) ( ~ 0 ,  ro)exp(-2ro). 
Polo) I' 
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The kernel D is translationally invariant along the slab but not perpendicular to  it. To 
account for this we use the method of images [2,5]: for any optical depth the diffusion 
propagator is assumed to be given by 

m=-w 

where p = 2 (T + 2r0) and zo = 0.7104; D,, is the translationally symmetric diffusion 
propagator. The method of images becomes exact in the diffusion limit which incorpo- 
rates long light paths only. In fact the long light paths (in this case long loops) suffer 
most from the finiteness of the slab and we assume equation (B.6) to hold rigorously. 
Substitution of equation (B.6) and applying Poisson's summation rule 

. w  CO 

equation (B.5) can be written as 

where 

[I - exp(-2r) exp(2irq)l exp(2iroq) 
1 - iq K B ( T , ~ )  = 1 - exp(-2r) - 

We have set q j  = (27r/p) j and 

For a semi-infinite slab this reduces t,o an integral 

In the forward direction the same formula (B.8) applies, but now 

sin rq 
rq 

KF(r, q )  = 2rexp(-r)  1 - exp(ipq)- (B.lO) 

Neglecting the second term between straight brackek is act,ua.lly the infinite space 
approximation, and is good for large q ,  e.g. short loops. 

For the three-scatterer loops the calculation is analogous. In the backward direc- 
tion for a semi-infinite slab 

( B . l l )  
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Here A(q)  is the uv-renormalised variant of A ( q )  E tan-' q / q ,  and is found by Fourier 
transformation 

(B.12) 

This renormalisation provides an upper cut-off in equation (B.11): qc M kojo/lt"l. 
The method of images cannot be used to  calculate the forward cone for all angles, 

and we must rely on the infinite space approximation. If we neglect angle dependence 
as result of extinction we obtain for the bistatic coefficient of the cone involving four 
scatterers and more 

x exp ( i f  - 2 1 0 )  (B.13) 

with f E IC - IC'. This simplifies to  equation (5.3) using the convolution theorem. The 
first integral is set equal to AIor. 

Next, let us consider tthe forward cone resulting from the interference of two loops 
involving three scatterers. We show that this scattering event does not yield a nar- 
row cone. Again we rely on the 'infinite space approximation' and assume that the 
renormalisation procedure in equation (B.12) can simply be replaced by the cut-off in 
reciprocal space: qc M ko70/ l f l .  It then follows, as in equation (5.3), that  

with 

(B.14) 

where now f E jo(IC-k'). In the wings we have f > 1 and we approximate A ( q + f )  M 
(7r/2)lq + fl-'. Performing the angular integration gives 

M 5 f- '  J'dq (tan-' q ) 2  + (5)3 
0 log S. (B.15) 

This rough estimate shows that the angle dependence is logarithmic and thus very 
broad. 

Appendix C Longitudinal corrections to the vector Green function 

This appendix deals with the asymptotic behaviour of the second term in equation 
(3.11) for the amplitude Green function for Rayleigh point scatterers 
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where we have set the isotropic self-energy on the shell ( p  = ko). This simplification 
defines the complex wavenumber r 2  E ki - Ci(ko )  and guarantees exponential decay 
of the part of the Green function given by the first term of equation (3.11). Following 
our self-consistent scheme of section 3 the transverse wave P and the longitudinal wave 
Q appearing in the equations of the self-energy equation (3.9) should be renormalised 
as well. This makes i t  possible to  continue the expression for C,(p) analytically into 
the sheet 

0 < I m p  < 3 I m r .  

Let us ignore the possible locations of singularities in this sheet coming from the 
denominator of the integrand in equation ((2.1) and assume that it is essentially p 
independent: z 2  - C , ( p )  % z 2 .  As is shown in section 3 this is a very good approxi- 
mation. Then the above proves that equation (C.l)  is exponentially damped with a 
decay length which is a t  least smaller than i/3. To investigate the behaviour for large 
2 we use the expression for C,(p) equat,ion (3.9) 

where we have defined 

Here P = P(zy) ,Q  = Q(zy) defined in equation (2.24.  The integral with the two 
spherical Bessel functions is [23] 

Hence 

s2 - 1 
ds F (  SX) - 

s3 . 
n2t4  a a 

AG(x) = 

By an asymptotical a.nalysis we can infer 

n2t4  exp(3irz) I 

AG( X) "Y - - xx. 
24 4n23 

This expression proves that  we are dealing with a strongly damped longitudinal mode 
with decay length 713 . For weak disorder, this mode is therefore not of any impor- 
tance. For large packing fractions it can, however, become important. If the Green 
functions in the expression of C,(p) are not renormalised, then C,(p) cannot be ana- 
lytically continued in a s h i p  along the real axis. Consequently, AG(x) would not be 
exponentially damped. Care should therefore be taken with density expansions in the 
self-energy. 
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